首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14201篇
  免费   890篇
  国内免费   689篇
  2023年   147篇
  2022年   146篇
  2021年   294篇
  2020年   284篇
  2019年   314篇
  2018年   399篇
  2017年   297篇
  2016年   285篇
  2015年   359篇
  2014年   605篇
  2013年   896篇
  2012年   484篇
  2011年   546篇
  2010年   499篇
  2009年   632篇
  2008年   783篇
  2007年   724篇
  2006年   770篇
  2005年   678篇
  2004年   606篇
  2003年   573篇
  2002年   564篇
  2001年   437篇
  2000年   365篇
  1999年   361篇
  1998年   311篇
  1997年   265篇
  1996年   239篇
  1995年   285篇
  1994年   272篇
  1993年   280篇
  1992年   240篇
  1991年   208篇
  1990年   200篇
  1989年   163篇
  1988年   157篇
  1987年   124篇
  1986年   102篇
  1985年   128篇
  1984年   165篇
  1983年   95篇
  1982年   106篇
  1981年   98篇
  1980年   81篇
  1979年   74篇
  1978年   49篇
  1977年   26篇
  1976年   25篇
  1975年   12篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Plasma membranes (1–2 mg protein) prepared from the livers of adult male rats and human organ donors were incubated with 0.6 μM [α-32P] guanosine triphosphate (GTP) in an adenosine triphosphate (ATP)-regenerating buffer at 37°C for 1 h; during this incubation, the [32P]GTP is hydrolyzed and the nucleotide that is predominantly bound to the membranes is [32P] guanosine diphosphate (GDP). [32P]GDP release from the liver membranes was proportional to the protein concentration and increased as a function of time. At 5 mM, Ca2+, Mg2+, Mn2+, and Zn2+ maximally inhibited GDP release by 80–90%, whereas, 5 mM Cu2+ maximally stimulated the reaction by 100%. Therefore, cations were not included in the buffer used in the GDP release step. One μM Gpp(NH)p (5′-guanylylimidodiphosphate), a nonhydrolyzable analog of GTP, maximally stimulated [32P]GDP release in the liver membranes by up to 30%. Although 10 nM Gpp(NH)p had no effect on GDP release, it appeared to stabilize the hormonal effect by blocking further GDP/GTP exchange. In the rat membranes, 1–100 nM glucagon (used as a positive control) stimulated [32P]GDP release by about 17% (P < .05); similarly, 0.1–100 nM insulin stimulated [32P]GDP release by 10–13% (P < .05). In the human membranes, 10 pM to 100 nM insulin stimulated [32P]GDP release by 7–10%. In the rat membranes, 10 nM insulin stimulated [32P]GDP release by 17 and 24% at 2 and 4 min, respectively (P < .05); in the human membranes, 10 nM insulin stimulated [32P]GDP release by about 9% at 2 and 4 min. Normal rabbit IgG (used as a control for insulin receptor antibody) by itself stimulated the GDP release by rat and human membranes. However, the stimulation of the GDP release by insulin receptor antibody was consistently higher than that observed with normal rabbit IgG. Four to 15 μg of insulin receptor antibody stimulated [32P]GDP release by 12–22% (P < .05) and 7–14% in rat and human membranes, respectively. These results indicate that ligand binding to the insulin receptor results in a functional interaction of the receptor with a guanine nucleotide-binding transducer protein (G protein) and activation of GTP/GDP exchange.  相似文献   
2.
Lalitha Guruprasad 《Proteins》2020,88(11):1387-1393
Coronavirus disease 2019 (COVID-19) is a pandemic infectious disease caused by novel severe acute respiratory syndrome coronavirus-2 (SARS CoV-2). The SARS CoV-2 is transmitted more rapidly and readily than SARS CoV. Both, SARS CoV and SARS CoV-2 via their glycosylated spike proteins recognize the human angiotensin converting enzyme-2 (ACE-2) receptor. We generated multiple sequence alignments and phylogenetic trees for representative spike proteins of SARS CoV and SARS CoV-2 from various host sources in order to analyze the specificity in SARS CoV-2 spike proteins required for causing infection in humans. Our results show that among the genomes analyzed, two sequence regions in the N-terminal domain “MESEFR” and “SYLTPG” are specific to human SARS CoV-2. In the receptor-binding domain, two sequence regions “VGGNY“ and ”EIYQAGSTPCNGV” and a disulfide bridge connecting 480C and 488C in the extended loop are structural determinants for the recognition of human ACE-2 receptor. The complete genome analysis of representative SARS CoVs from bat, civet, human host sources, and human SARS CoV-2 identified the bat genome (GenBank code: MN996532.1) as closest to the recent novel human SARS CoV-2 genomes. The bat SARS CoV genomes (GenBank codes: MG772933 and MG772934) are evolutionary intermediates in the mutagenesis progression toward becoming human SARS CoV-2.  相似文献   
3.
K Bell 《Animal genetics》1994,25(Z1):109-113
Transferrin, albumin, 6-phosphogluconate dehydrogenase and vitamin D-binding protein polymorphisms were detected in 242 feral and domesticated Australian donkeys by polyacrylamide gel electrophoresis, starch gel electrophoresis, autoradiography, immunoblotting with specific antisera and activity staining. All four TF and two ALB variants were donkey specific while only one of the PGD variants was donkey specific. The two GC variants were electrophoretically identical to the Equus caballus F and S proteins. Available evidence suggested that the TF, ALB, PGD and GC systems are controlled by co-dominant alleles with frequencies of the most common alleles of each system being 0·831, 0·946, 0·957 and 0·861 respectively. Glucose phosphate isomerase and plasminogen were monomorphic in the Australian population of donkeys.  相似文献   
4.
Neurofilament (NF) proteins are distributed in a diminishing proximodistal gradient along rat sciatic nerve when compared with total noncollagen or other proteins in nerve. About a twofold decline of NF proteins can be detected by quantitating nerve proteins that have been separated by gel electrophoresis. A similar decrease of immunoreactivity to each NF subunit is seen in distal nerve segments when noncollagen nerve proteins are immunoblotted. Parallel decreases occur in all three NF proteins, thereby maintaining neurofilament subunit stoichiometry along the neuraxis. The same NF gradient can be detected when the NF contents in nerve branches to the gluteus and gastrocnemius muscles are compared with each other and with those in nerve segments taken from the same proximodistal levels of the parent sciatic nerve. The gradient of NF proteins increases during postnatal development and is readily detected by postnatal day 16. During the same period of development, the heavy NF subunit appears for the first time and is rapidly incorporated throughout the sciatic nerve. Hence, the NF gradient becomes manifest during the development and maturation of the adult form of the axonal cytoskeleton. The basis for the proximodistal gradient of NF proteins in peripheral nerve is presently unknown. The extent of the gradient cannot be accounted for on the basis of diminishing numbers of nerve fibers or increasing amounts of other nerve proteins, e.g., collagen, in distal nerve. An alternative interpretation is that the gradient reflects a low level of NF protein turnover during axonal transport.  相似文献   
5.
  1. Download : Download high-res image (123KB)
  2. Download : Download full-size image
  相似文献   
6.
Abstract: In membranes of rat olfactory bulb, a brain region in which muscarinic agonists increase cyclic AMP formation, the muscarinic stimulation of guanosine 5'- O -(3-[35S]thiotriphosphate) ([35S]GTPγS) binding was used as a tool to investigate the receptor interaction with the guanine nucleotide-binding regulatory proteins (G proteins). The stimulation of the radioligand binding by carbachol (CCh) was optimal (threefold increase) in the presence of micromolar concentrations of GDP and 100 m M NaCl. Exposure to N -ethylmaleimide and pertussis toxin markedly inhibited the CCh effect, whereas it increased the relative stimulation of [35S]GTPγS binding elicited by pituitary adenylate cyclase-activating polypeptide (PACAP). On the other hand, membrane treatment with cholera toxin curtailed the PACAP stimulation of [35S]GTPγS binding but did not affect the response to CCh. Like CCh, a number of cholinergic agonists stimulated [35S]GTPγS binding in a concentration-dependent and saturable manner. The antagonist profile of the muscarinic stimulation of [35S]GTPγS binding was highly correlated with that displayed by the muscarinic stimulation of adenylyl cyclase. These data indicate that the olfactory bulb muscarinic receptors couple to Gi/Go, but not to Gs, and support the possibility that activation of Gi/Go mediates the stimulatory effect on adenylyl cyclase activity.  相似文献   
7.
8.
Alpha-helical coiled coils and bundles: how to design an alpha-helical protein   总被引:63,自引:0,他引:63  
C Cohen  D A Parry 《Proteins》1990,7(1):1-15
  相似文献   
9.
To enable large-scale antibody production, the creation of a stable, high producer cell line is essential. This process often takes longer than 6 months using standard limited dilution techniques and is very labor intensive. The use of a tri-cistronic vector expressing green fluorescent protein (GFP) and both antibody chains, separated by a GT2A peptide sequence, allows expression of all proteins under a single promotor in equimolar ratios. By combining the advantages of 2A peptide cleavage and single cell sorting, a chimeric antibody-antigen fusion protein that contained the variable domains of mouse IgG with a porcine IgA constant domain fused to the FedF antigen could be produced in CHO-K1 cells. After transfection, a strong correlation was found between antibody production and GFP expression (r = 0.69) using image analysis of formed monolayer patches. This enables the rapid selection of GFP-positive clones using automated image analysis for the selection of high producer clones. This vector design allowed the rapid selection of high producer clones within a time-frame of 4 weeks after transfection. The highest producing clone had a specific antibody productivity of 2.32 pg/cell/day. Concentrations of 34 mg/L were obtained using shake-flask batch culture. The produced recombinant antibody showed stable expression, binding and minimal degradation. In the future, this antibody will be assessed for its effectiveness as an oral vaccine antigen.  相似文献   
10.
The aim of the work was to elucidate the presence of different hydrogen bond (H-bond) in five Zif268 proteins (1A1F, 1A1G, 1A1H, 1A1I and 1A1K). For this purpose, we have performed the QM/MM and molecular dynamics (MD) studies, the results of which reveal that H-bonds depend on the amino acid sequence and orientation of the H-bond donor atoms. Further, high specificity of Arg and Asn is observed for guanine and adenine, respectively. Furthermore, both conventional and non-conventional hydrogen bond also exists in the proteins, among them N–H?O H-bonds are the strongest. Besides, the non-conventional bonds play a role in the protein folding and DNA stacking. From the QSAR properties, amino acids such as asparagine and aspartic acids are the major reactive sites in the Zif268 protein. The electron affinities of Zif268 proteins are high, so the charge transfer occurs from the DNA to the protein molecules. NBO analysis indicates the majority of charge transfer occurs from DNA to the corresponding anti-bonding orbital of the peptides. Root mean square deviation and Rg (radius of gyration) show that 1A1F is more compact and in native state during MD simulation. The minimum Rg leads to the large number of hydrogen bonds formation in 1A1F. Higher solvent accessible surface area in 1A1I indicates that the cavity inside the protein is large.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号